

Réseau d'eau chaude sanitaire : pavillon individuel Entreprise Pascal CHAPALAIN 29 Plouigneau

Réalisé avec des tubes multicouches pré-isolés avec 10mm de silice amorphe : 2inToob DN16x10 et DN20x10

Résumé:

En France aujourd'hui, le bilan énergétique moyen des réseaux d'eau chaude est catastrophique:

- Plus de 50% de la chaleur produite pour l'ECS et le chauffage est perdue par fuites thermiques dans les réseaux de tuyauterie, et
- En moyenne ce sont 3 litres d'eau potable qui sont perdus à chaque utilisation de l'ECS pour « attendre » l'eau chaude, que nous n'utilisons que si elle est au-dessus de 35°C, l'effet de seuil.

Afin de diminuer les conséquences de cet effet de seuil, il faut que l'E.C.S. soit maintenue le plus longtemps possible au-dessus de cette température après chaque utilisation, pour ainsi éviter que l'utilisateur suivant soit obligé de vider le réseau pour avoir de l'eau chaude à bonne température : > 35°C.

Donc pour une utilisation moyenne de 1 litre d'E.C.S à 50°C, mitigée à 35°C au robinet, il faut en moyenne produire 3 litres supplémentaire d'ECS uniquement pour que l'ECS atteigne 35°C au robinet. Soit 3+1=4 litres à produire, soit seulement 25% de l'E.C.S. produite qui est réellement utilisée, ou 75% de gaspillée!!

Si nous pouvions diviser par 2 ou 3 le volume moyen d'eau perdue pour attendre l'ECS à la bonne température, cela permettrait des économies substantielles en eau potable et en énergie consommée : de 30 à 50%.

A cette fin, les buts à atteindre sont de réduire les volumes d'eau dormante dans les réseaux, et d'améliorer l'isolation des réseaux pour allonger le temps de refroidissement de l'ECS statique dans les réseaux, et ainsi réduire la fréquence de vidange des réseaux nécessaire pour attendre l'E.C.S. > 35°C.

Mais il y a d'autres contraintes à ne pas négliger, car :

- Il ne faut pas que l'isolation ajoute des risques en cas d'incendie, il faut utiliser des isolants ignifuges,
- Il ne faut pas que l'isolation ajoutée soit une source de solvants chimiques venant polluer l'air de l'habitat, les bulles des mousses en polymères sont gorgées de solvants en tout genre, et ces polymères continuent à polymériser tout au long de leur vie, provoquant des émanations lentes de solvants,
- Il faut que l'isolation élimine les ponts thermiques aux points de fixation et aux traversées de murs et de sols, car ces ponts thermiques sont la source d'approx 1/3 des fuites thermiques, une isolation continue est donc indispensable,
- Il faut que la solution d'isolation soit pérenne pour plusieurs décennies, car on ne refait pas un réseau tous les ans, ni même tous les 10 ans, les producteurs d'isolation et les poseurs doivent s'engager sur 20 à 30 ans pour répondre aux attentes de clients, et aux contraintes réelles de la construction ; et
- Il faut que l'isolation soit la plus performante possible pour que le temps de refroidissement soit le plus long possible, et ainsi réduire le nombre des phases de soutirage pour « attendre l'ECS > 35°C ».

D'une façon générale, il semble que les mousses polymères ne puissent répondre à tous ces critères simultanément, du fait de leur composition, ou de leur système de fixation par adhésif, ou de leur vieillissement. Les solutions avec tubes pré-isolés en continu, avec des isolants inertes semblent donc à privilégier.

Chaque fixation cause des pertes d'énergie, aggravées au fil des ans par le mauvais vieillissement des mousses

et des adhésifs.

Et pour avoir une influence sensible sur les 3 litres d'ECS gaspillés en moyenne, donc sur la fréquence des phases d'attente d'ECS >35°C, il faudrait idéalement atteindre un temps de refroidissement de 50°C à 35°C de 2 heures, dans un air à 20°C.

PIB sarl ISOLATION 0298 634 257 contact@pib-isolation.fr

Réseau d'eau chaude sanitaire : pavillon individuel Entreprise Pascal CHAPALAIN 29 Plouigneau

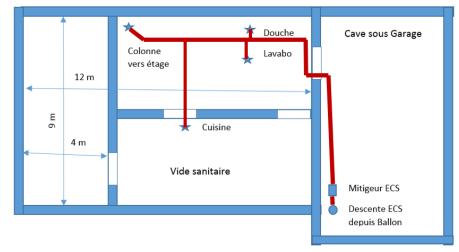
Réalisé avec des tubes multicouches pré-isolés avec 10mm de silice amorphe : 2inToob DN16x10 et DN20x10

Le chantier test:

- réalisé par l'entreprise Pascal Chapalain de Plouigneau 29
- réfection du réseau d'ECS en cuivre dans un pavillon individuel de 1982,
- le réseau cuivre a été refait avec des tubes multicouches pré-isolés avec 10mm de silice morphe 2inToob.

La réfection du réseau a permis :

- 1. en adaptant les sections des tuyauteries, de réduire le volume d'eau contenu dans les tuyaux de 0,7 litre, entrainant une économie d'eau perdue pour « attendre l'eau chaude », à chaque utilisation de l'E.C.S. dans tout le pavillon, lors des phases d'attente d'ECS > 35°C,
- 2. de diviser par deux le volume d'E.C.S. nécessaire pour atteindre les 35°C d'E.C.S. au robinet de la cuisine, du fait de l'utilisation de tubes multicouches qui ont une inertie thermique nettement inférieure à celle du cuivre, et de la disparition des ponts thermiques à chaque point de fixation,


et surtout

3. grâce à l'isolation de haute performance de 10mm de silice amorphe (λ= 0,015W/mK), le temps entre utilisateur d'E.C.S., sans avoir à vider le réseau d'E.C.S. de son eau « froide », a été quadruplé. Soit un temps de refroidissement de 50°C à 35°C qui a été augmenté de 15 à 60 minutes, période pendant laquelle il ne sera plus nécessaire « d'attendre l'eau chaude » au robinet de la cuisine.

Pour la rénovation d'un réseau d'ECS, l'entreprise Chapalain est intervenue en Avril 2015 dans ce pavillon d'une zone résidentielle de Morlaix 29600.

Ce pavillon a été construit sur cave et vide sanitaire il y a 33 ans, avec les réseaux d'ECS et de chauffage en vide sanitaire, avant les remontées vers les points de soutirage.

<u>Disposition du réseau d'ECS avant travaux</u>:

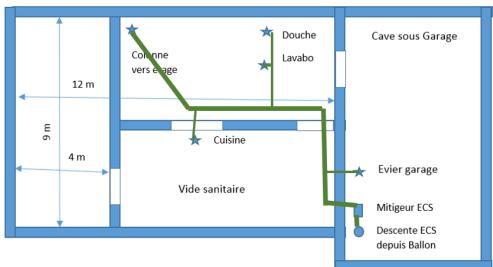
Réseau d'eau chaude sanitaire : pavillon individuel Entreprise Pascal CHAPALAIN 29 Plouigneau

Réalisé avec des tubes multicouches pré-isolés avec 10mm de silice amorphe : 2inToob DN16x10 et DN20x10

Mesures avant travaux:

Afin de pouvoir quantifier l'intérêt de la rénovation du réseau d'ECS, nous avons mesuré à 3 reprises, à plus d'une heure d'écart, le volume d'eau potable à soutirer au robinet de la cuisine, avant d'atteindre les 35°C*, à l'aide d'un pot gradué d'un demi litre, et en présence de Mme G LeLous diplômée huissier de justice.

Trois mesures ont été réalisées : 11, 10 et 11 volumes de pot pour atteindre la température de 35°C, soit une moyenne de 5,3 litres d'eau potable chauffée et gaspillée à chaque soutirage depuis la cuisine**.


Analyse du refroidissement de l'ECS*** de l'ancien réseau dans le vide sanitaire à 15°C: afin de qualifier l'isolation existante, il nous a suffi de mesurer les points de refroidissement à 15 et 30 minutes.

Méthode : avant chaque test on laisse l'ECS se stabiliser au robinet (autour de 50°C), puis on mesure sa température :

- après 1/4h de stagnation : 30°C, encore tout-juste utilisable,
- puis après 1/2h : 20°C, donc « froide » pour l'utilisateur.

<u>Disposition du réseau d'ECS après travaux</u>:

Première conclusion, l'analyse des volumes des réseaux avant et après rénovation permet de mettre en avant le premier impact d'une rénovation : cela permet souvent de réduire le volume d'ECS dans le réseau, avec ici une réduction de 0,7 litre du volume d'ECS dans la liaison ballon-cuisine.

De plus, ce petit volume sera économisé à chaque future utilisation de l'ECS dans ce pavillon. Et comme ce volume d'eau avait au préalable été chauffé, cela représente une seconde économie d'énergie cummulative à chaque utilisation.

	Type	ø ext	ø	int	Section	Vol/m	Long
	DN16	16 mm	12	mm	113 mm ²	0,11 l/m	2 m
	Cu	12 mm	10	mm	79 mm²	0,08 l/m	4 m
	Cu	16 mm	14	mm	154 mm²	0,15 l/m	4 m
	Cu	18 mm	16	mm	201 mm ²	0,20 l/m	11 m
- 1.							
ľ	Volume	de l'and	ien	résea	au d'ECS cu	isine :	3,37 L
- 1					113 mm ²		
Ì	DN 16	16 mm	12	mm		0,11 l/m	2 m
Ì	DN 16 DN 20	16 mm 20 mm	12 16	mm mm	113 mm²	0,11 l/m 0,20 l/m	2 m
ľ	DN 16 DN 20	16 mm 20 mm	12 16	mm mm	113 mm² 201 mm² eau d'ECS c	0,11 l/m 0,20 l/m	2 m 12 m

A noter le conflit : plus le volume d'eau contenu dans les tuyaux est important, et plus l'inertie thermique est importante, mais plus le volume perdu aux premiers soutirages sera important. L'arbitrage doit se faire en tenant compte de la fréquence d'utilisation du réseau, et du nombre de robinets sur la ligne.

PIB sarl ISOLATION 0298 634 257 contact@pib-isolation.fr

Réseau d'eau chaude sanitaire : pavillon individuel Entreprise Pascal CHAPALAIN 29 Plouigneau

Réalisé avec des tubes multicouches pré-isolés avec 10mm de silice amorphe : 2inToob DN16x10 et DN20x10

Mesures après travaux :

Avec le même système de mesure, il faut maintenant 5 volumes de pot pour atteindre les 35°C, soit 2,5 litres, ce qui représente une économie d'eau potable chauffée de 2,5 litres à chaque première utilisation de l'ECS depuis la cuisine, dont 0,7 litre de gain volumique, et 1,8 litre de gain thermique au soutirage, du fait des tubes multicouches dont l'inertie thermique est nettement plus faible que celle du cuivre de l'ancien réseau avec ponts thermiques à chaque point de fixation.

Analyse du refroidissement de l'ECS*** dans le vide sanitaire à 15°C, après avoir laissé stabiliser la température de l'ECS au robinet à 50°C, on mesure la température après des temps d'attente:

- température après 1/4h de stagnation : 40°C,
- après 1/2h : 35°C,
- après 1h : 30°C, soit un quadruplement du temps pour cette température.

Ces mesures sont en phase avec les courbes théoriques calculées, voir ***.

Chantier:

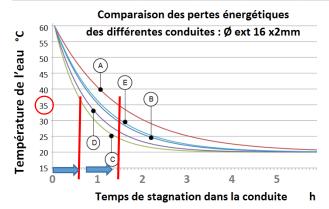
Voir les photos en annexe 2.

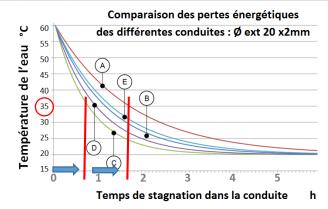
Investissement:

- Temps du chantier : 1 journée, à 2 plombiers : 2 jour-hommes
- Raccords: 4 T à sertir, 4 droits DN16 à sertir, 5 droits DN20 à sertir: 100E
- Tubes: 5m de 2inToob DN16x10mm d'isolant et 16m de 2inToob DN20x10mm d'isolant: 290E
- Autres consommables: 10E

Economie:

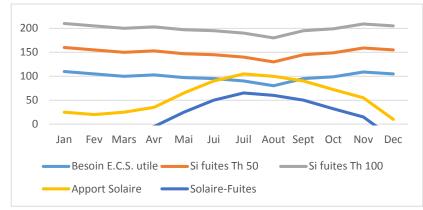
Il est estimé que ce nouveau réseau permettra de réduire la quantité d'E.C.S. à produire de l'ordre de 40%, sans nuire au confort, ni changer les habitudes de vie pour les habitants du pavillon.


Réseau d'eau chaude sanitaire : pavillon individuel Entreprise Pascal CHAPALAIN 29 Plouigneau


Réalisé avec des tubes multicouches pré-isolés avec 10mm de silice amorphe : 2inToob DN16x10 et DN20x10

Notes:

- * : 35°C est la température couramment admise comme celle de l'eau chaude sanitaire pour un utilisateur standard moyen, car lorsque l'ECS au robinet a une température inférieure, l'utilisateur laisse couler l'eau jusqu'à obtenir de nouveau une ECS au-dessus de 35°C.
- ** : en moyenne en France 3 litres d'eau potables sont perdus à chaque ouverture du robinet d'eau chaude.
- *** : le temps de refroidissement de l'ECS dans le réseau d'ECS est LE premier critère qui provoque le gaspillage d'ECS, car si l'ECS passe sous le seuil de refroidissement des 35°C, alors l'utilisateur laissera couler l'ECS jusqu'à avoir de l'ECS > 35°C. Il faut donc que <u>l'ECS refroidisse le plus lentement possible</u> quand elle est immobile dans le réseau. Plus le refroidissement sera lent, et plus les économies d'ECS seront importantes. Car toujours aujourd'hui en France plus de 50% de la chaleur transportée par les réseaux d'eau chaude est perdue sous forme de fuites thermiques. Courbes de refroidissement dans un air à 20°C :


Diamètre tube	Dn		Diam ext	: 16mm Diam i	nt: 12mm		Diam ext: 20mm Diam int: 16mm					
Epaisseur isolant		10mm	5mm	6mm	10mm	20mm	10mm 5mm		6mm	10mm	20mm	
Isolant		aérogel λ= (0.015 W/m·K	isola	nt λ= 0.035 W	/m·K	aérogel λ= (0.015 W/m·K	isola	isolant λ= 0.035 W/m·K		
Résistance thermique	RIU	8,60 mK/W	5,15 mK/W	2,55 mK/W	3,69 mK/W	5,70 mK/W	7,36 mK/W	4,30 mK/W	2,14 mK/W	3,15 mK/W	5,00 mK/W	
Résistance transfert surfacique : 8 W/m²·K	Rou	0,88 mK/W	1,22 mK/W	1,42 mK/W	1,11 mK/W	0,71 mK/W	0,80 mK/W	1,06 mK/W	1,24 mK/W	1,00 mK/W	0,66 mK/W	
Coeff perte totale :	UR	0,11 W/mK	0,16 W/mK	0,25 W/mK	0,21 W/mK	0,16 W/mK	0,12 W/mK	0,19 W/mK	0,30 W/mK	0,24 W/mK	0,18 W/mK	
Classe svt RT2005		6+	5	2	3	5	6+	4	1	2	4	
Exemples :		Α	В	С	D	E	Α	В	С	D	E	

L'impact de la qualité d'isolation des réseaux techniques et d'E.C.S. peut-être visualisé simplement : pour un besoin au robinet d'E.C.S. = 100, et si l'apport solaire sans fuite thermique représente 50% du besoin.

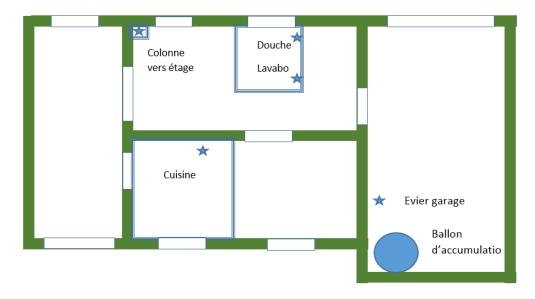
Alors si les fuites thermiques du réseau d'ECS sont de 50% de la chaleur produite (la moyenne française) soit égale à la chaleur utilisée, alors le solaire ne

représente plus que 25% du besoin total, pour une même production.

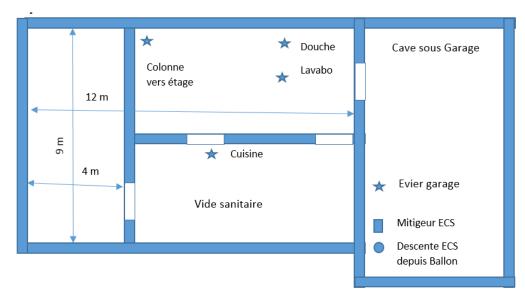
Cet écart doit alors être compensé par des apports d'énergies conventionnelles : fuel, gaz, bois, etc.

De même si le réseau technique solaire a des fuites thermiques, cette énergie devra être compensée par des énergies conventionnelles (voir apport Solaire-fuites).

Pour tous les réseaux, ECS et source de chaleur, la pérennité des isolations est un facteur essentiel.



Réseau d'eau chaude sanitaire : pavillon individuel Entreprise Pascal CHAPALAIN 29 Plouigneau


Réalisé avec des tubes multicouches pré-isolés avec 10mm de silice amorphe : 2inToob DN16x10 et DN20x10

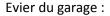
Annexe 1:

Disposition du pavillon au RDC:

Disposition du pavillon au sous-sol sous le garage, et vide-sanitaire sous l'habitation :

Réseau d'eau chaude sanitaire : pavillon individuel Entreprise Pascal CHAPALAIN 29 Plouigneau

Réalisé avec des tubes multicouches pré-isolés avec 10mm de silice amorphe : 2inToob DN16x10 et DN20x10


Annexe 2: photos du chantier

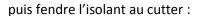
Ancien réseau : passage cave – vide sanitaire

Sortie ECS au ballon :

montage du raccord à sertir pour le tube multicouche DN20 en sortie du ballon d'accumulation : et descente vers la cave du 2inToob pré-isolé :

ancien réseau dans la cave et sous l'évier :

et passage du nouveau tube :


préparation de l'extrémité du tube avec l'outil de calibrage :

et sertissage de l'embout :

préparation des 2inToob avant sertissage, stabiliser les films PE anti poussière avec un scotch :

Réseau d'eau chaude sanitaire : pavillon individuel Entreprise Pascal CHAPALAIN 29 Plouigneau

Réalisé avec des tubes multicouches pré-isolés avec 10mm de silice amorphe : 2inToob DN16x10 et DN20x10

Puis calibrer le tube avec l'outil standard tournant :

Exemple de raboutage, avec l'isolation remise en place après sertissage des raccords pour assurer la continuité de l'isolation :

Mitigeur limiteur de température du réseau d'ECS :

le tube d'arrivée d'eau froide pour mitigée l'eau chaude est un pont thermique important (eau froide à 10°C, air ambiant à 15°C, et les tuyaux « froids » sont mesurés à 20°C, ils diffusent la chaleur :

Préparation du mitigeur avec les raccords pour tubes multicouches, et remontage entre l'arrivée du ballon, et le tube partant dans le vide sanitaire, noter la rupture de pont thermique avec un tube 2inToob de 50cm en partie basse :

Ancienne alimentation de la SdB du RDC:

Isolation continue garantie à tous les passages de mur ou de sol :

Réseau d'eau chaude sanitaire : pavillon individuel Entreprise Pascal CHAPALAIN 29 Plouigneau

Réalisé avec des tubes multicouches pré-isolés avec 10mm de silice amorphe : 2inToob DN16x10 et DN20x10

Installation d'un « T »:

Nouveau réseau posé en plafond du vide sanitaire avec embranchement vers lavabo et douche du RDC :

Extrémité du réseau vers la montée à l'étage :

Raccordement de l'évier de la cuisine :

Réseau d'eau chaude sanitaire : pavillon individuel Entreprise Pascal CHAPALAIN 29 Plouigneau

Réalisé avec des tubes multicouches pré-isolés avec 10mm de silice amorphe : 2inToob DN16x10 et DN20x10

Schéma des équivalences d'épaisseur d'isolant en fonction du λ du matériau isolant :

90

8

70

En fonction du λ w/mκ

Epaisseurs d'isolant comparées

normale
thermique norma
performance
e
tuyauterie
al le
Pour une t

en W	en m
090'0	76
0,045	36
0,030	16
0,015	5
Lambda	Epaisseur
	0,015 0,030 0,045 0,060

en W/mK en mm en mm

76

20 9 80

garantir l'efficacité thermique des tuyauteries, il est important que les isolants Pérennité: la silice amorphe est du verre, son vieillissement en est très proche. Comme les installations E.C.S. sont posées pour au moins 20 ans, gardent le même λ sur toute la période

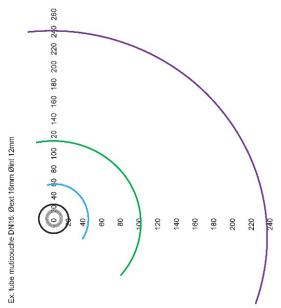
90

Réseaux		Solaire	Chauffag
2inToob		NON	Ino
TwinToob	Commence of the last of the la	Ino	ino

NON

Ino

80	2
ш	5
	3
ш	80



Epaisseurs d'isolant comparées

En fonction du λ w/mk

	ayant un coefficient de perte thermique $N_{\rm i}=0,11W/mK$ Si elle est réalisée avec des tubes de Øext 16mm, alors les épaisseurs d'isolant requises sont :	en W/mK	en mm	en mm
rmique	lors les épais	090'0	230	476
rmance the	e Zext 16mm, a	0,045	06	196
haute perfo	arte thermique les tubes de (0,030	35	86
terie de	ient de pe	0,015	10	36
Pour une tuyauterie de haute performance thermique	ayant un coefficient de perte thermique Si elle est réalisée avec des tubes de Ø	Lambda	Epaisseur	Diamètre total

sources d'émanation de divers solvants tout au long de leur vie, et en cas d'incendie Qualité de l'air, et risque incendie: la silice amorphe est du verre, elle est alors que les isolants polymères sont des deviennent des carburants, en émettant des fumées souvent toxiques. chimiquement stable et ne brule pas,

Tel: +33 298 634 257 Fax: +33 253 596 101

Réseau d'eau chaude sanitaire : pavillon individuel Entreprise Pascal CHAPALAIN 29 Plouigneau

Réalisé avec des tubes multicouches pré-isolés avec 10mm de silice amorphe : 2inToob DN16x10 et DN20x10

R et U calculés des 2inToob et TwinToob, validés par le BE TecSol :

Perpignan, le 30 Janvier 2015

<u>Objet</u> : Validation des calculs théoriques de performances en termes de résistance thermique des canalisations PIB Isolation

Par le présent document, TECSOL certifie l'exactitude des calculs théoriques effectués par la société PIB – Isolation pour le calcul du coefficient de pertes linéiques de sa gamme 2inToob et Twintoob sur la base de la véracité du coefficient λ (conductivité thermique) de l'isolant aérogel marquée CE (valeur de 0,015 W/m.K).

Résistances et conductivités thermiques : Ces valeurs sont obtenues par calculs théoriques pour les tubes isolés, à l'aide des formules mathématiques appropriées. Ces calculs donnent les résultats théoriques suivants que nous certifions exacts :

	Toob ticouche isolé	Tub øint	e nu øext	Tube isolé øext total	R total	Ui total Ui = 1/Rt
DN16	+ isolant 5 mm + isolant 10 mm	12 mm	16 mm	26 mm 36 mm	9,43 12,55	0,106 0,080
DN20	+ isolant 5 mm + isolant 10 mm	16 mm	20 mm	30 mm 40 mm	7,73 10.52	0,129 0,095
	ech , R1: tube multicou (Dext/Dint))/(2 . π . λ)			ge surfacique	mK/W	W/mK

	annelé isolé	Tub	e nu øext	Tube isolé øext total	R total	Ui total Ui = 1/Rtt	
DN12 par 2 tubes	+ isolant 5 mm	12 mm	16,5 mm	28 mm 38 mm	6,18 9,28	0,162 0,108	
DN16	6 + isolant 5 mm 16 mm		21,5 mm	33 mm	5,03	0,108	
par 2 tubes	+ isolant 10 mm	10 111111	21,3 11111	43 mm	7,73	0,129	
DN20 + isolant 5 mm		20 mm	26,5 mm	38 mm	4,25	0,235	
par 2 tubes	+ isolant 10 mm	20 111111	20,5 11111	48 mm	6,64	0,151	
DN25	+ isolant 5 mm	25 mm	32,0 mm	43 mm	3,63	0,275	
par 2 tubes	+ isolant 10 mm	23 111111	32,0 111111	53 mm	5,76	0,174	
DN 32	+ isolant 5 mm	32 mm	41,0 mm	52 mm	2,93	0,341	
par 1 tube	+ isolant 10 mm	32 111111	41,0 11111	62 mm	4,74	0,211	
DN40	+ isolant 5 mm	40 mm	47,3 mm	58 mm	2,59	0,386	
par 1 tube	+ isolant 10 mm	40 11111	47,5 mm	68 mm	4,22	0,237	
Rtt = R1+R	2+Rech , R1: isolant, R2	peau PVC, F	tech: echange si	urfacique	mK/W	W/mK	

Classification théorique des tubes isolés suivant le principe du CSTB (EN 12828)

ÉPAISSEUR MINIMALE D'ISOLATION EN MM ET

COEFFICIENT DE PERTE POUR LES CLASSES D'ISOLATION 1 A 6 (CF. EN12828)

	Classe1 Classe2								Classe3									
Extérieur du tube (sans isolant)	Coeff perte lin UI		Conducti de l'isola				Coeff perte lin UI			tivité the ant λ (V			Coeff perte lin UI			uctivité the solant A (1		
	(Wlm.K)	0,015	0,030	0,040	0,050	0,060	(W/m.K)	0,015	0,030	0,040	0,050	0,060	(Wlm.K)	0,015	0,030	0,040	0,050	0,060
diam 10 mm	0,25	0.3 mm	1 mm	3 mm	6 mm	11 mm	0,23	1 mm	2 mm	5 mm	8 mm	14 mm	0,20	1 mm	4 mm	7 mm	13 mm	20 mm
diam 20 mm	0,29	2 mm	5 mm	7 mm	11 mm	16 mm	0,25	3 mm	7 mm	12 mm	19 mm	27 mm	0,22	4 mm	10 mm	17 mm	26 mm	38 mm
diam 30 mm	0,32	3 mm	8 mm	12 mm	17 mm	23 mm	0,28	4 mm	11 mm	17 mm	25 mm	38 mm	0,24	5 mm	14 mm	23 mm	35 mm	50 mm
diam 40 mm	0,35	4 mm	10 mm	14 mm	20 mm	28 mm	0,30	6 mm	14 mm	21 mm	30 mm	42 mm	0,26	7 mm	18 mm	28 mm	41 mm	58 mm
diam 60 mm	0,42	6 mm	12 mm	18 mm	26 mm	37 mm	0,36	7 mm	17 mm	26 mm	37 mm	50 mm	0,30	9 mm	23 mm	35 mm	50 mm	69 mm
diam 80 mm	0,48	7 mm	14 mm	22 mm	31 mm	41 mm	0,41	9 mm	20 mm	29 mm	41 mm	54 mm	0,34	11 mm	26 mm	39 mm	55 mm	74 mm
diam 100 mm	0,55	8 mm	15 mm	23 mm	32 mm	44 mm	0,46	10 mm	22 mm	32 mm	43 mm	57 mm	0,38	12 mm	29 mm	42 mm	59 mm	78 mm
diam 200 mm	0,88	10 mm	19 mm	26 mm	35 mm	46 mm	0,72	12 mm	27 mm	37 mm	49 mm	62 mm	0,58	16 mm	35 mm	50 mm	66 mm	85 mm
diam 300 mm	1,21	10 mm	21 mm	29 mm	39 mm	50 mm	0,98	13 mm	28 mm	39 mm	51 mm	64 mm	0,78	18 mm	38 mm	53 mm	69 mm	86 mm
			Class	e4			Classe5					Classe6						
Extérieur du tube (sans isolant)	Coeff perte lin		Conducti de l'isola				Coeff perte lin			tivité the ant λ (V			Coeff perte in			uctivité the solant λ (1		
preserve of	(Wlm.K)	0,015	0,030	0,040	0,050	0,060	(Wm.K)	0,015	0,030	0,040	0,050	0,060	(Wim.K)	0,015	0,030	0,040	0,050	0,060
diam 10 mm	0,18	2 mm	6 mm	11 mm	19 mm	31 mm	0,15	3 mm	9 mm	17 mm	29 mm	49 mm	0,13	3 mm	13 mm	22 mm	40 mm	62 mm
diam 20 mm	0,19	5 mm	13 mm	23 mm	36 mm	56 mm	0,16	6 mm	18 mm	33 mm	54 mm	86 mm	0,14	8 mm	25 mm	36 mm	70 mm	110 mm
diam 30 mm	0.21	7 mm	19 mm	31 mm	49 mm	72 mm	0.17	9 mm	26 mm	45 mm	71 mm	111 mm	0,14	13 mm	35 mm	57 mm	94 mm	148 mm
diam 40 mm	0,22	9 mm	24 mm	38 mm	58 mm	84 mm	0,18	12 mm	32 mm	54 mm	85 mm	128 mm	0,15	16 mm	43 mm	68 mm	110 mm	156 mm
diam 60 mm	0.25	12 mm	30 mm	47 mm	70 mm	99 mm	0.21	15 mm	41 mm	67 mm	102 mm	150 mm	0,17	21 mm	60 mm	90 mm	138 mm	210 mm
diam 80 mm	0.28	14 mm	35 mm	54 mm	77 mm	107 mm	0.23	19 mm	48 mm	76 mm	113 mm	162 mm	0.18	26 mm	70 mm	108 mm	155 mm	240 mm
diam 100 mm	0,31	16 mm	38 mm	58 mm	82 mm	112 mm	0.25	21 mm	53 mm	82 mm	120 mm	169 mm	0,20	28 mm	75 mm	115 mm	165 mm	260 mm
diam 200 mm	0.46	21 mm	47 mm	68 mm	92 mm	120 mm	0.36	27 mm	65 mm	97 mm	134 mm	178 mm	0.28	38 mm	93 mm	140 mm	180 mm	280 mm
diam 300 mm	0.61	23 mm	51 mm	72 mm	95 mm	122 mm	0.47	32 mm	71 mm	102 mm	137 mm	178 mm	0.36	43 mm	100 mm	149 mm	223 mm	280 mm

•	ne CSTB (CF. E	1412020)
Туре	Epaisseur d	
1, F.S. (100.1	5 mm	10 mm
2inToob DN16	5	6
2inToob DN20	4	6
TwinToob DN12	5	6
TwinToob DN16	4	6
TwinToob DN20	3	5
TwinToob DN25	2	5
TwinToob DN32	non dispo	4
TwinToob DN40	non dispo	3

NB: Ces calculs sont effectués sur une base théorique. Une validation par des tests devra être réalisée.

My

Daniel Mugnier Responsable R&D TECSOL

Siège social : 105 avenue Alfred Kastler - Tecnosud - B.P.90434 - 66004 Perpignan Cedex - FRANCE Tél. : +33 (0) 4 68 68 16 40 - Fax : +33 (0) 4 68 68 16 41 - e-mail : info@tecsol.fr

Société Anonyme au Capital de 164 808 € / R.C. Perpignan B 324 938 786 / Code APE 7112B / www.tecsol.fr N° TVA Intracommunautaire : FR 29 324 938 786

